1 of 2

Philter Implementation for Text De-identification

Last Updated: December 2025

Background	1
About Philter Tool	1
Local Device (PC): Running Philter	1
General	2
Installation	2
Downloading Python	2
Downloading Philter	2
Installing Dependencies	2
Using Philter with the Custom Philter Program	3
Setup	3
Usage	3
Documentation	4
Running Philter Manually	5
Notes	5
File setup	5
CMD: Running Philter	5
Adding Words/Phrases to Whitelist	6
File structure	6
Helpful Commands	6
HSRDC: Running Philter	7
Data cleaning (in SAS) before running Philter	7
Running Philter Tool	7
Philter implementation in HSRDC	7
File Structure for Dynamic Adaptation	7
MobaXTerm Commands to Run Philter (step by step):	7
Adding Words/Phrases to Whitelist	7
Helpful Other Commands:	7
[bookmark: _Toc2046143957]Background
To better support the use of text messages and other forms of free text in research, de-identification of protected health information (PHI) is essential. Philter is an open-source text de-identification tool designed to identify and remove PHI and other personally identifiable information from unstructured text. It uses configurable, rule-based policies to detect elements such as names, dates, locations, and contact information, enabling researchers to prepare text data for analysis while supporting privacy and regulatory compliance.

We thank the following team members for this important work: Vincent Zhu developed and documented Python-based local device implementation (PC); Melanie Paredes provided additional testing and Mac implementation; Christopher Snider developed HSRDC (server) implementation; Hannah Mayard provided overall oversight and quality assurance.
[bookmark: _Toc2113531142]About Philter Tool
Github: https://github.com/BCHSI/philter-deidstable1_mirror/tree/develop

Philter is an open-source text de-identification tool designed to identify and remove sensitive information from unstructured text. Originally developed for healthcare applications, it is commonly used to de-identify clinical notes by detecting protected health information (PHI) and personally identifiable information (PII), such as names, dates, addresses, contact details, and identification numbers. Philter operates through configurable policies that specify which data elements to identify and how they should be handled (e.g., redaction, masking, or replacement). Its underlying engine applies rule- and pattern-based methods to scan text and modify sensitive content while preserving overall readability. Philter can be deployed locally making it suitable for privacy-preserving research workflows where sensitive text must be shared or analyzed in compliance with data protection requirements.

More information about Philter can be found here.

[bookmark: _Toc581767803]Local Device (PC): Running Philter
[bookmark: _heading=h.z9ltonkcpwll][bookmark: _Toc566669693]General
Due to OS differences, you may have to replace all “py 3.11” commands with “python3.11” when operating on MacOS, or simply “python” if that does not work either.
[bookmark: _heading=h.t8ccy0h5x9cy][bookmark: _Toc1613220104]Installation
[bookmark: _heading=h.t2dm6lh7zsjm][bookmark: _Toc210888592]Downloading Python
1. Go to: https://www.python.org/downloads/release/python-3119/
2. Scroll to the bottom and download the recommended version for the relevant OS
3. Run the installer
4. If you are on Windows, make sure to select “Add python.exe to PATH”
5. Click “Install Now”

[bookmark: _heading=h.33srloi7fhw][bookmark: _Toc1946127041]Downloading Philter
1. Go to: https://github.com/BCHSI/philter-deidstable1_mirror/tree/develop
2. In the top left, click the button with “develop” on it
3. In the dropdown, select “Tags” and select the most recent one (v1.2024.1 as of now)
4. Click the green “Code” button in the top right and download the zip
5. Unzip the folder in your file explorer and move it elsewhere if you wish
[bookmark: _heading=h.jy2csto2exk7][bookmark: _Toc655126570]Installing Dependencies
1. Right click the folder and select “Open in Terminal” (Windows) or “New Terminal at Folder” (Mac)
2. In the terminal, paste the following commands and press enter after each to install the necessary python libraries. This may some take a moment, wait until all packages are fully installed before continuing)
py -3.11 -m pip install --upgrade certifi
py -3.11 -m pip install -r requirements.txt
3. Run these lines one at a time. This installs the necessary language processing data (you can skip this if you use the program below)
py -3.11
import nltk
import ssl
import certifi

(one line)
ssl._create_default_https_context = lambda: ssl.create_default_context(cafile=certifi.where())

nltk.download('averaged_perceptron_tagger')
exit()

[bookmark: _heading=h.8syp6fvc5bvz][bookmark: _Toc1330699107]Using Philter with the Custom Philter Program
This program, philter_manager.py, has been built to handle all necessary philter processes and with a simple GUI. This includes initialization, data preparation and cleaning, processing, whitelist changes, and log summaries. It also uses parallel processing which can greatly reduce runtimes for large datasets. It is downloadable from Google Drive here: philter_manager.py

[bookmark: _heading=h.f53pdwo3ufz0][bookmark: _Toc1728097680]Setup
1. Once downloaded, move it into the main Philter folder (the one with all the other files)
2. Reopen CMD from the main folder. Run:
py -3.11 philter_manager.py
(if the file name was changed, replace it accordingly)

3. Follow the prompts, there are multiple different “modes” for different functionalities

[bookmark: _heading=h.og85w4k6fn7d][bookmark: _Toc7868129]Usage
Setup (Mode 1)
1. Run this when using for the first time, it will create the necessary folders

Prepare Data (Mode 2)
1. Select the dataset you want to prepare in the file explorer popup, it must be a CSV
2. The necessary text files will be outputted under \input\temp_input\ in the Philter directory
(the program creates one text file for each row, make sure to put all of these in one input folder if running Philter manually)

Run Philter (Mode 3)
1. Follow the same steps as mode 2
2. When prompted for a config file, click cancel to select the default (philter_one2024.json)
3. Input the names of the columns you want to de identify, the program can handle multiple at once
4. Input a name for the output file that will be created within \output\
5. Allow the program time to run, this may take more than an hour for datasets with many thousands of notes and also depending on the number of available processors. The program will notify you when it has completed all processes and you can use your computer normally for other tasks in the meantime
6. The de identified dataset along with relevant logs produced by Philter can be found in the newly created folder in \output\

Add to whitelist (mode 4)
1. Select a config (can use default again)
2. Input the words or phrases you want to add, the program can accept any number as long as they are comma separated ex: word1, word2, phrase one, word3

Summarize logs (mode 5)
1. Select an output folder created by the program (not the main output folder but a folder under it ex: \output\dataset_1\
2. The top 10 most common words identified as PHI will be displayed in the popup and the top 100 will appear in the console

Notes/tips:
· You can close the CMD window to end the process early
· Ignore most of the “warnings” in the console, they are from Philter and don’t affect processing
[bookmark: _heading=h.o132vrmzar58][bookmark: _Toc602735730]Documentation
This is not necessary for using the program and only serves as an explanation of processing. The full code has comments that explains everything in more depth, you can access it by right clicking the program in the folder and selecting “edit”.

Setup (Mode 1)
1. Installs the averaged_perceptron_tagger library from the Natural Language ToolKit (NLTK) package.
2. Creates input and output folders, along with temporary folders under each of those

Prepare Data (Mode 2)
1. Unwraps and removes empty lines in the specified column
2. Creates a .txt file with the contents of each row for each column along with a unique pseudo ID
3. Creates folders for each column with the new text files

Run Philter (Mode 3)
· If running for first time
1. Creates new filter in config and regex file to whitelist pseudo IDs
1. Creates directory for dataset output with a folder for logs
2. Executes mode 2 data preparation
3. Runs each column consecutively
4. Creates unique input and output folders for each available processor
5. Evenly divides notes amongst processor input folders
6. Runs Philter subprocess for each batch in parallel
7. Collects log files in a logs\column\batch_logs\ and collects phi_marked.json in a temporary folder, logs\column\collected_phi_marked\ (\column\ refers to current processing column name)
8. Compiles phi_marked jsons into compiled_phi_marks.json in logs\column\
9. Rebuilds dataset with pseudo ID and current column and outputs in main dataset output folder. If there's another column, repeats from step 4
10. After all columns are processed, combines compiled_phi_marks.json from each column into one collected_compiled_phi_marks.json in logs\

Add to whitelist (mode 4)
· If running for first time
1. Adds a new whitelist filter in the selected config file
2. Creates a regex file and uses format (?i)\b(wordA|wordB|phrase one)\b
· If running again
1. Adds phrases to already created regex file

Summarize logs (mode 5)
3. Accesses logs\collected_compiled_phi_marks.json and parses json
4. Counts most common PHI and displays

[bookmark: _heading=h.h6rjymgmpzoo][bookmark: _Toc1870563820]Running Philter Manually
[bookmark: _heading=h.qwqx4ohvvrxn][bookmark: _Toc2014422]Notes
· The data cleaning process is identical to the SAS process
· If using pseudo IDs, you may need to add them to the whitelist. Reference the directions below and use the regex: (?i)ID_\d{6} (change the 6 depending on how many digits you use, must start with ID_ ex: ID_123456)
· All commands and files should stay in the main Philter folder
[bookmark: _heading=h.ndaoskxfr34n][bookmark: _Toc335403127]File setup
1. Create folders named “input” and “output” in the main Philter folder
2. For every time you run Philter, create a new folder under both the input and output folders and name them appropriately
3. Copy or move the dataset you want deidentified into the new folder under “input”
[bookmark: _heading=h.kf6j1j3yv9kw][bookmark: _Toc1810842967]CMD: Running Philter
This is useful to deidentify singular text files as the program only supports datasets
1. Open the Philter folder in Command Prompt again
2. The general structure of a philter command follows (all one line):
py -3.11 deidpipe.py -i input_folder/ -o output_folder/ -f configs/philter_one2024.json
3. For the most part, the input and output paths are the only variables that need to be changed.
· You must input the paths relative to the Philter directory
Ex. A folder named “input” directly in the Philter folder will be input/ in the command, whereas a folder within that input folder named “data_1” will be input/data_1/ in the command
· If a file name has spaces, enclose the path in quotation marks
Ex. “input/data 1/” if the folder is named “data 1”
· The forward slash at the end of the path is needed
4. Philter will only process text (.txt) files within the input folder and will output the deidentified text files in the output folder
5. Make sure to properly prepare datasets using the methods described in the HSRDC section, alternatively the downloadable program can also be used to create prepared text files without running Philter
[bookmark: _heading=h.b7kb8yjvlkq9][bookmark: _Toc1067034785]Adding Words/Phrases to Whitelist
The process for adding words or phrases to the whitelist is identical to that in the HSRDC section, the file locations are just different. Refer to the file structure below to locate the config file and the regex folder.
[bookmark: _Toc596711140]File structure
*All paths under specific user Ex. C:\Users\johndoe
Python:
\AppData\Local\Programs\Python\Python310\python.exe
Philter Folder:
\Downloads\philter-deidstable1_mirror-develop
Main program:
\Downloads\philter-deidstable1_mirror-develop\deidpipe.py
Config File:
\Downloads\philter-deidstable1_mirror-develop\configs\philter_one2024.json
Filters Folder:
	\Downloads\philter-deidstable1_mirror-develop\filters
Regex Folder (for whitelist only):
\Downloads\philter-deidstable1_mirror-develop\filters\regex\safe
Data input (user created):
\Downloads\philter-deidstable1_mirror-develop\input
Data output (user created):
	\Downloads\philter-deidstable1_mirror-develop\output

[bookmark: _Toc358130010]Helpful Commands
Philter options/help menu
deidpipe.py -h

[bookmark: _Toc173438947]HSRDC: Running Philter
We will be using Dynamic Adaptation as an example for file structure.
[bookmark: _Toc70471044]Data cleaning (in SAS) before running Philter
1. In the original CSV file, unwrap the text column.
2. Import the CSV file into SAS, create pseudo ID for each row.
3. Remove any hidden empty line in text field.
4. Separate into two files:
1) One with only the pseudo ID and message fields to feed Philter.
2) The other with all structured data (also have pseudo ID).
5. After running Philter, import the de-identified TXT file back to SAS and merge with the structured data by pseudo ID.
6. Folder containing SAS programs
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/SAS code
7. Folder holding SAS datasets
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/Data/SAS Data
[bookmark: _Toc243918990]Running Philter Tool

[bookmark: _Toc1827846875]Philter implementation in HSRDC

PMACS has installed Philter on the HSRDC. Philter as copied from the source Github contains source versions of configs and filters folders. Penn teams using the Philter tool for their own purposes (making changes to the whitelist etc) need to create a separate folder structure containing:

· A Penn version of the configs folder with at least one configs .json file to serve as main config. Copy the UCSF recommended config file (philter_one2024.json) as a starting point and make edits to this file.
· A FIlters folder containing all files from the UCSF Github. Penn teams will add .txt files containing whitelist “rules” for each word/phrase whitelisted. For most cases these will be added to the regex/safe/ subfolder.
· Input and Output data folders

[bookmark: _Toc1796994913]File Structure for Dynamic Adaptation (a project example)

Philter on HSRDC:
/misc/appl/philter-20240829/
Project folder:
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId
Penn Config File:
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/configs/philter_one_penn.json
Penn Filters Folder:
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/filters/
Penn Added Regex Files:
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/filters/regex/safe/
Original csv file for testing
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/Data/Original csv file
Data Input:
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/Data/Input/
*note: input3 is used to exploration purpose by Erin
Data Output:
/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/Data/Output/
*note: output3 is used to exploration purpose by Erin

[bookmark: _Toc583319613]MobaXTerm Commands to Run Philter (step by step):

1. ssh hsrdcsub3
2. ibash
3. module load python/3.9
4. module load philter
5. cd /misc/appl/philter-20240829/
6. # NOTE: Command below is all on one line
deidpipe.py -i /project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/Data/Input/ -o /project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/Data/Output/ -f /project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/configs/philter_one_penn.json

[bookmark: _Toc312647435]Adding Words/Phrases to Whitelist

2. There are some words that we don’t want Philter to de-identify, such as “WTH ID” or “fibit”. In this case, we will need to add those words to whitelist and tell philter that we should include these words.

3. Edit Penn Config file philter_one_penn.json to whitelist a word or phrase. Words and phrases are usually added as regex types (as opposed to more dynamic whitelisting that may require additional guidance from the Philter team). The file path needs to point to a filter file created in the next step. Fitbit example:

{
 "title":"Penn Fitbit",
 "type":"regex",
 "exclude":false,
 "filepath":"/project/Volpp_ASCVD/Dynamic_Adaption/Philter_DeId/filters/regex/safe/fitbit_safe.txt",
 "notes":"Penn addition to add fitbit to whitelist"
 }

4. Create the .txt file pointed to in the new config entry file path. This file contains the regex for capturing the whitelisted word/phrase. This can get complicated for dynamic entries - for now we have been sticking to exact words/phrases that appear in the Input file that we want to whitelist 100% of the time. Fitbit regex example: (?i)\bfitbit\b

[bookmark: _Toc867578633]Helpful Other Commands:

Philter options menu
deidpipe.py -h
Find where Philter is installed on the HSRDC
whereis philter

	
	
	

